Modeling the propagation characteristics of chorus using CRRES suprathermal electron fluxes

نویسندگان

  • J. Bortnik
  • R. M. Thorne
  • N. P. Meredith
چکیده

[1] In the present paper, phase space density functions of the form f (v) = AN/v n are fitted to statistical distributions of suprathermal electron fluxes (E = 0.213–16.5 keV) from the CRRES satellite, parameterized by L-shell, Magnetic Local Time (MLT), and geomagnetic activity. The fitted distributions are used in conjunction with ray tracing to calculate the Landau damping rates of an ensemble of rays representing whistler-mode chorus waves. The modeled propagation characteristics are compared with observations of chorus wave power from the CRRES satellite, as a function of L-shell, MLT, and magnetic latitude, in various frequency bands, and under various geomagnetic conditions. It is shown that the model results are remarkably consistent with many aspects of the observed wave distributions, including frequency, L-shell, MLT, and latitudinal dependence. In addition, the MLT distribution of wave power becomes characteristically asymmetric during active geomagnetic conditions, with small propagation lengths on the nightside which increase with MLT and maximize on the dayside. This asymmetry is shown to be directly related to the dynamics of the Landau resonant suprathermal electrons which drift around the Earth whilst undergoing scattering and loss due to a variety of plasma waves. Consequently, the suprathermal electrons play an important role in radiation belt dynamics, by controlling the distribution of chorus, which in turn contributes to the acceleration and loss of relativistic electrons in the recovery phase of storms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Radial diffusion modeling with empirical lifetimes: comparison with CRRES observations

A time dependent radial diffusion model is used to quantify the competing effects of inward radial diffusion and losses on the distribution of the outer zone relativistic electrons. The rate of radial diffusion is parameterized by Kp with the loss time as an adjustable parameter. Comparison with HEEF data taken over 500 Combined Release and Radiation Effects Satellite (CRRES) orbits indicates t...

متن کامل

Modeling radiation belt electron dynamics during GEM challenge intervals with the DREAM3D diffusion model

[1] As a response to the Geospace Environment Modeling (GEM) “Global Radiation Belt Modeling Challenge,” a 3D diffusion model is used to simulate the radiation belt electron dynamics during two intervals of the Combined Release and Radiation Effects Satellite (CRRES) mission, 15 August to 15 October 1990 and 1 February to 31 July 1991. The 3D diffusion model, developed as part of the Dynamic Ra...

متن کامل

Reanalysis of Relativistic Radiation Belt Electron 2 Fluxes using CRRES Satellite Data , a Radial 3 Diffusion Model and a Kalman Filter

2 35 36 Abstract 37 38 In this study we perform a reanalysis of the sparse MEA CRRES relativistic electron 39 data using a relatively simple 1D radial diffusion model and a Kalman filtering approach. 40 By combining observations with the model in an optimal way we produce a high time and 41 space resolution reanalysis of the radiation belt electron fluxes over a 50 day period starting 42 on Aug...

متن کامل

Radiation belt electron precipitation into the atmosphere: Recovery from a geomagnetic storm

[1] Large geomagnetic storms are associated with electron population changes in the outer radiation belt and the slot region, often leading to significant increases in the relativistic electron population. The increased population decays in part through the loss, that is, precipitation from the bounce loss cone, of highly energized electrons into the middle and upper atmosphere (30–90 km). Howe...

متن کامل

Parametric validations of analytical lifetime estimates for radiation belt electron diffusion by whistler waves

The lifetimes of electrons trapped in Earth’s radiation belts can be calculated from quasi-linear pitch-angle diffusion by whistler-mode waves, provided that their frequency spectrum is broad enough and/or their average amplitude is not too large. Extensive comparisons between i proved analytical lifetime estimates and full numerical calculations have been performed in a broad parameter range r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007